ACP34

Material description

Material ID: ACP34

Material type: Aluminium composite panel with a core consisting of polyethylene (PE) and fire retardants.

Polymer: Polyethylene (32%)

Additives (fire retardants, fillers or traces of inorganic elements): Magnesium Hydroxide (56%), Calcium Carbonate (7%), Silicon Oxide (5%), Sodium (1%), traces of other elements (<1%)

Core thickness: 2.91mm

Thickness of single metal skin: 0.5mm

 
Compound Mass Concentration (%)
Polyethylene (PE) 32
Magnesium Hydroxide (Mg(OH)2) 56
Calcium Carbonate (CaCO3) 7
Silicon Oxide (SiO2) 5
Sodium (Na) 1
Traces of iron (Fe) <1
Traces of potassium (K) <1
Traces of aluminium (Al) <1

A. Material composition identification

A.1 Attenuated total reflection – Fourier transform infrared spectroscopy (ATR-FTIR)

Identified Compounds
Polyethylene (PE)
Magnesium Hydroxide (Mg(OH)2)
Calcium Carbonate (CaCO3)
Silicon Oxide (SiO2)
...
Figure 1 . FTIR spectra: Absorbance percentage versus wavenumber from the sample.
...
Figure 2. FTIR spectra: Absorbance percentage versus wavenumber from the sample and the identified compounds.

A.2 Energy Dispersive X-Ray Fluorescence (EDXRF)

Element Mass Concentration (%)
Mg 20
Ca 5
Si 3
Fe 1
Na 1
K <1
Al <1
Al <1
...
Figure 3. EDXRF spectra. Counts vs energy. Identified elements are shown as vertical lines.

B. Thermogravimetric analysis

Condition Fraction of mass residue at 800°C
Non-oxidative (nitrogen) 0.41
Oxidative (air) 0.40
Peak ID Temperature peak (°C) Amplitude of peak (°C-1)
Peak 1 391 1.82 x 10-3
Peak 2 485 1.114 x 10-2
Peak 3 693 5.7 x 10-4
Peak ID Temperature peak (°C) Amplitude of peak (°C-1)
Peak 1 405 3.12 x 10-3
Peak 2 472 9.36 x 10-3
Peak 3 690 5.9 x 10-4
...
Figure 4. Normalised mass (solid line) and derivative of the normalised mass (dashed line) in 150 ml min-1 of nitrogen and a heating rate of 20°C min-1.
...
Figure 5. Normalised mass (solid line) and derivative of the normalised mass (dashed line) in 150 ml min-1 of air and a heating rate of 20°C min-1 .

C. Gross Heat of Combustion

Trial ΔHc [kJ g-1]
Trial 1 18.05
Trial 2 18.13
Trial 3 18.09
Average 18.09
Std dev 0.04

D. Ignition parameters

Critical heat flux for ignition Ignition temperature Total heat transfer coefficient of losses Apparent thermal inertia
q̇″cr [kW m−2] Tig [°C] hr [W m-2 K-1] kρc [kW2 m-4 K-2 s]
16.40 388 40 1.526
...
Figure 6. Time-to-ignition vs incident radiant heat flux for samples.

E. Burning behaviour

Heat flux Test Time to ignition Fraction of mass residue Peak heat release rate Total energy released
q̇″inc [kW m-2] tig [s] mres [-] q̇″p [kW m-2] Qt [MJ m-2]
35 kW m-2
Test 1 127 0.49 134.87 73.85
Test 2 138 0.47 140.82 85.59
Avg 132 0.48 137.84 79.72
50 kW m-2
Test 1 84 0.45 141.18 70.72
Test 2 74 0.46 196.31 78.93
Avg 79 0.46 168.75 74.83
60 kW m-2
Test 1 60 0.41 222.74 86.03
Test 2 61 0.45 226.74 81.66
Avg 60 0.43 224.74 83.85
80 kW m-2
Test 1 - - - -
Test 2 - - - -
Avg - - - -
...
Figure 7. Normalised mass loss over time for samples tested with 35, 50, 60 and 80 kW m-2.
...
Figure 8. Heat release rate per unit area over time for samples tested with 35, 50, 60 and 80 kW m-2.
Test ΔHc [kJ g-1]
35 kW m-2 (Test 1) 34.37
35 kW m-2 (Test 2) 36.82
50 kW m-2 (Test 1) 29.51
50 kW m-2 (Test 2) 34.13
60 kW m-2 (Test 1) 33.81
60 kW m-2 (Test 2) 34.25
80 kW m-2 (Test 1) -
80 kW m-2 (Test 2) -
Average 33.82
Std dev 2.37

F. Flame Spread

Orientation q̇″min.spread [kW m-2] Vf.min [mm s-1]
Horizontal 10.60 -
Vertical 11.10 -
...
Figure 9. Lateral flame spread rate versus heat flux.
...
Figure 10. Vertical flame spread rate versus heat flux.
...
Figure 11. Vf-1/2 as function of q̇″ext in horizontal configuration.
...
Figure 12. Vf-1/2 as function of q̇″ext in vertical configuration.
Orientation Trial (kρcpΦh2)12 [m32 s12 kW-1] Φ [kW2 m-3]
Horizontal 1 13.68 5.19
Horizontal 2 13.429 5.39
Vertical 1 6.271 24.71
Vertical 2 7.444 17.54