ACP15

Material description

Material ID: ACP15

Material type: Aluminium composite panel with a core consisting of polyethylene modified with vinyl acetate (PE-VA), a fire retardant, and an inorganic filler.

Polymer: Polyethylene modified with vinyl acetate (30%)

Additives (fire retardants, fillers or traces of inorganic elements): Magnesium Hydroxide (55%), Calcium Carbonate (13%), Silicon (1%), Sodium (1%), traces of other elements (<1%)

Core thickness: 5.3mm

Thickness of single metal skin: 0.5mm

 
Compound Mass Concentration (%)
Polyethylene modified with vinyl acetate (PE-VA) 30
Magnesium Hydroxide (Mg(OH)2) 55
Calcium Carbonate (CaCO3) 13
Silicon (Si) 1
Sodium (Na) 1
Traces of iron (Fe) <1
Traces of potassium (K) <1
Traces of aluminium (Al) <1

A. Material composition identification

A.1 Attenuated total reflection – Fourier transform infrared spectroscopy (ATR-FTIR)

Identified Compounds
Polyethylene modified with vinyl acetate (PE-VA)
Magnesium Hydroxide (Mg(OH)2)
Calcium Carbonate (CaCO3)
...
Figure 1 . FTIR spectra: Absorbance percentage versus wavenumber from the sample.
...
Figure 2. FTIR spectra: Absorbance percentage versus wavenumber from the sample and the identified compounds.

A.2 Energy Dispersive X-Ray Fluorescence (EDXRF)

Element Mass Concentration (%)
Mg 21
Ca 9
Si 2
Na 1
Fe 1
K <1
Al <1
...
Figure 3. EDXRF spectra. Counts vs energy. Identified elements are shown as vertical lines.

B. Thermogravimetric analysis

Condition Fraction of mass residue at 800°C
Non-oxidative (nitrogen) 0.47
Oxidative (air) 0.48
Peak ID Temperature peak (°C) Amplitude of peak (°C-1)
Peak 1 391 2.18 x 10-3
Peak 2 486 8.86 x 10-3
Peak 3 729 1.42 x 10-3
Peak ID Temperature peak (°C) Amplitude of peak (°C-1)
Peak 1 413 3.24 x 10-3
Peak 2 462 7.46 x 10-3
Peak 3 725 1.31 x 10-3
...
Figure 4. Normalised mass (solid line) and derivative of the normalised mass (dashed line) in 150 ml min-1 of nitrogen and a heating rate of 20°C min-1.
...
Figure 5. Normalised mass (solid line) and derivative of the normalised mass (dashed line) in 150 ml min-1 of air and a heating rate of 20°C min-1 .

C. Gross Heat of Combustion

Trial ΔHc [kJ g-1]
Trial 1 13.81
Trial 2 13.91
Trial 3 14.02
Average 13.91
Std dev 0.11

D. Ignition parameters

Critical heat flux for ignition Ignition temperature Total heat transfer coefficient of losses Apparent thermal inertia
q̇″cr [kW m−2] Tig [°C] hr [W m-2 K-1] kρc [kW2 m-4 K-2 s]
28 502 52.30 1.309
...
Figure 6. Time-to-ignition vs incident radiant heat flux for samples.

E. Burning behaviour

Heat flux Test Time to ignition Fraction of mass residue Peak heat release rate Total energy released
q̇″inc [kW m-2] tig [s] mres [-] q̇″p [kW m-2] Qt [MJ m-2]
35 kW m-2
Test 1 201 0.56 136.75 117.56
Test 2 196 0.54 136.74 122.34
Avg 198 0.55 136.75 119.95
50 kW m-2
Test 1 122 0.53 162.67 128.70
Test 2 118 0.53 155.72 130.52
Avg 120 0.53 159.20 129.61
60 kW m-2
Test 1 88 0.52 204.66 127.36
Test 2 86 0.52 207.43 126.44
Avg 87 0.52 206.05 126.90
80 kW m-2
Test 1 - - - -
Test 2 - - - -
Avg - - - -
...
Figure 7. Normalised mass loss over time for samples tested with 35, 50, 60 and 80 kW m-2.
...
Figure 8. Heat release rate per unit area over time for samples tested with 35, 50, 60 and 80 kW m-2.
Test ΔHc [kJ g-1]
35 kW m-2 (Test 1) 32.60
35 kW m-2 (Test 2) 33.29
50 kW m-2 (Test 1) 33.71
50 kW m-2 (Test 2) 33.07
60 kW m-2 (Test 1) 32.28
60 kW m-2 (Test 2) 32.44
80 kW m-2 (Test 1) -
80 kW m-2 (Test 2) -
Average 32.90
Std dev 0.55

F. Flame Spread

Orientation q̇″min.spread [kW m-2] Vf.min [mm s-1]
Horizontal 20.30 0.20
Vertical 19 1.70
...
Figure 9. Lateral flame spread rate versus heat flux.
...
Figure 10. Vertical flame spread rate versus heat flux.
...
Figure 11. Vf-1/2 as function of q̇″ext in horizontal configuration.
...
Figure 12. Vf-1/2 as function of q̇″ext in vertical configuration.
Orientation Trial (kρcpΦh2)12 [m32 s12 kW-1] Φ [kW2 m-3]
Horizontal 1 3.898 31.51
Horizontal 2 4.501 23.64
Vertical 1 0.986 492.16
Vertical 2 1.265 299.32