ACP35

Material description

Material ID: ACP35

Material type: Aluminium composite panel with a core consisting of polyethylene (PE) and a fire retardant.

Polymer: Polyethylene (39%)

Additives (fire retardants, fillers or traces of inorganic elements): Magnesium Hydroxide (56%), Calcium (2%), Silicon (1%), Titanium (1%), Sodium (1%), traces of other elements (<1%)

Core thickness: 2.97mm

Thickness of single metal skin: 0.5mm

 
Compound Mass Concentration (%)
Polyethylene (PE) 39
Magnesium Hydroxide (Mg(OH)2) 56
Calcium (Ca) 2
Silicon (Si) 1
Titanium (Ti) 1
Sodium (Na) 1
Traces of sulfur (S) <1
Traces of iron (Fe) <1
Traces of chlorine (Cl) <1
Traces of potassium (K) <1

A. Material composition identification

A.1 Attenuated total reflection – Fourier transform infrared spectroscopy (ATR-FTIR)

Identified Compounds
Polyethylene (PE)
Magnesium Hydroxide (Mg(OH)2)
...
Figure 1 . FTIR spectra: Absorbance percentage versus wavenumber from the sample.
...
Figure 2. FTIR spectra: Absorbance percentage versus wavenumber from the sample and the identified compounds.

A.2 Energy Dispersive X-Ray Fluorescence (EDXRF)

Element Mass Concentration (%)
Mg 20
Ca 3
Ti 2
Si 1
Na 1
Fe <1
S <1
Cl <1
Mn <1
K <1
...
Figure 3. EDXRF spectra. Counts vs energy. Identified elements are shown as vertical lines.

B. Thermogravimetric analysis

Condition Fraction of mass residue at 800°C
Non-oxidative (nitrogen) 0.40
Oxidative (air) 0.41
Peak ID Temperature peak (°C) Amplitude of peak (°C-1)
Peak 1 428 2.08 x 10-3
Peak 2 482 1.416 x 10-2
Peak 3 673 2.5 x 10-4
Peak ID Temperature peak (°C) Amplitude of peak (°C-1)
Peak 1 313 3 x 10-4
Peak 2 411 5.8 x 10-3
Peak 3 463 8.88 x 10-3
Peak 4 670 2.4 x 10-4
...
Figure 4. Normalised mass (solid line) and derivative of the normalised mass (dashed line) in 150 ml min-1 of nitrogen and a heating rate of 20°C min-1.
...
Figure 5. Normalised mass (solid line) and derivative of the normalised mass (dashed line) in 150 ml min-1 of air and a heating rate of 20°C min-1 .

C. Gross Heat of Combustion

Trial ΔHc [kJ g-1]
Trial 1 20.52
Trial 2 20.55
Trial 3 20.62
Average 20.56
Std dev 0.04

D. Ignition parameters

Critical heat flux for ignition Ignition temperature Total heat transfer coefficient of losses Apparent thermal inertia
q̇″cr [kW m−2] Tig [°C] hr [W m-2 K-1] kρc [kW2 m-4 K-2 s]
18.50 413 42.40 1.125
...
Figure 6. Time-to-ignition vs incident radiant heat flux for samples.

E. Burning behaviour

Heat flux Test Time to ignition Fraction of mass residue Peak heat release rate Total energy released
q̇″inc [kW m-2] tig [s] mres [-] q̇″p [kW m-2] Qt [MJ m-2]
35 kW m-2
Test 1 126 0.41 178.94 87.73
Test 2 134 0.39 158.38 81.81
Avg 130 0.40 168.66 84.77
50 kW m-2
Test 1 66 0.39 207.71 84.12
Test 2 65 0.39 204.51 83.43
Avg 66 0.39 206.11 83.77
60 kW m-2
Test 1 46 0.39 244.55 82.64
Test 2 51 0.38 227.71 82.82
Avg 48 0.38 236.13 82.73
80 kW m-2
Test 1 - - - -
Test 2 - - - -
Avg - - - -
...
Figure 7. Normalised mass loss over time for samples tested with 35, 50, 60 and 80 kW m-2.
...
Figure 8. Heat release rate per unit area over time for samples tested with 35, 50, 60 and 80 kW m-2.
Test ΔHc [kJ g-1]
35 kW m-2 (Test 1) 38.47
35 kW m-2 (Test 2) 34.97
50 kW m-2 (Test 1) 35.39
50 kW m-2 (Test 2) 35.36
60 kW m-2 (Test 1) 35.26
60 kW m-2 (Test 2) 34.67
80 kW m-2 (Test 1) -
80 kW m-2 (Test 2) -
Average 35.69
Std dev 1.39

F. Flame Spread

Orientation q̇″min.spread [kW m-2] Vf.min [mm s-1]
Horizontal 10.60 -
Vertical 6.30 -
...
Figure 9. Lateral flame spread rate versus heat flux.
...
Figure 10. Vertical flame spread rate versus heat flux.
...
Figure 11. Vf-1/2 as function of q̇″ext in horizontal configuration.
...
Figure 12. Vf-1/2 as function of q̇″ext in vertical configuration.
Orientation Trial (kρcpΦh2)12 [m32 s12 kW-1] Φ [kW2 m-3]
Horizontal 1 13.063 3.67
Horizontal 2 14.324 3.05
Vertical 1 3.369 55.12
Vertical 2 3.629 47.51